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In this paper we derive the impedance of a circular hole in the inner tube of a coaxial beam pipe. The method
used differs from the classic Bethe’s diffraction theory, since, in the calculation of the magnetic and electric
dipole moments, we take into account also the scattered fields in the aperture to match the power conservation
law. The low-frequency impedance shows a real contribution accounting for the TEM waves propagating
within the coaxial waveguide.@S1063-651X~96!09406-8#

PACS number~s!: 41.75.2i, 41.20.2q

I. INTRODUCTION

The impedance of a hole in a beam pipe has been recently
thoroughly studied. Many different shapes and hole distribu-
tions have been analyzed@1–4#. The importance of such a
geometry in the vacuum chamber arose in particular in the
design of the Superconducting Supercollider~SSC! @5# and
the Large Hadron Collider~LHC! @6,7#. At low frequencies,
i.e., for wavelengths much larger than the hole size, the fields
can be calculated by applying Bethe’s theory, which states
that the hole is equivalent to a combination of radiating elec-
tric and magnetic dipoles and their moments are related to
the amplitude of the primary incident fields@8#. At first order
the method yields a purely imaginary impedance@1,2#. Re-
cently, the real part of the impedance has been calculated
considering the energy radiated by the hole into the beam
pipe and in the free space@9,10#. The impedance of a hole in
a coaxial pipe has been calculated by Gluckstern applying
Bethe’s theory@3#.

In this paper we improve the impedance calculations in
several respects. In order to make the power conservation
hold, the electric and magnetic dipole moments are calcu-
lated taking into account also the fields scattered in the cir-
cular and coaxial waveguides. Furthermore, the impedances
are calculated also for a charge traveling with velocitybc.

At low frequency, below the cutoff of the circular and
coaxial waveguides, the longitudinal impedance shows a real
contribution, scaling likev2, which corresponds to the TEM
mode propagating inside the coaxial waveguide.

II. GENERAL APPROACH

In this section we briefly describe the method generally
used in the microwave techniques to study the coupling of
two waveguides through a small aperture. In our case, how-
ever, the primary field is produced by a charge traveling
off-axis with velocity bc. The fields are scattered by the
small aperture in both the circular (gi) and coaxial wave-
guide (ge) ~Fig. 1!.

Due to the symmetry, the primary fields produced by the
charge inside the circular pipe have only the components:

E0r , E0z, andH0w ~see Appendix A!.
The scattered fields in the pipes can be represented as an

infinite series of normal modes. Modes TE and TM can
propagate in both thegi andge waveguides, while a TEM
mode ~which propagates without cutoff! must be also con-
sidered inge .

The scattered field can be expressed as a sum of indepen-
dent modes~see Appendix B!. Each mode will propagate in
both z directions, after scattering occurs at the aperture.
Therefore we have, for waveguidegi :

Ei5(
n,m

@an,mei ~n,m!
1 e2 jkz~n,m!zu~z!

1bn,mei ~n,m!
2 ejkz~n,m!zu~2z!#,

~1!

H i5(
n,m

@an,mhi ~n,m!
1 e2 jkz~n,m!zu~z!

1bn,mhi ~n,m!
2 ejkz~n,m!zu~2z!#,

and for waveguidege :

Ee5(
n,m

@cn,mee~n,m!
1 e2 jkz~n,m!zu~z!

1dn,mee~n,m!
2 ejkz~n,m!zu~2z!#,

~2!

He5(
n,m

@cn,mhe~n,m!
1 e2 jkz~n,m!zu~z!

1dn,mhe~n,m!
2 ejkz~n,m!zu~2z!#,

whereu~z! is the step function, and

*Corresponding author. FIG. 1. Structure geometry.
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e~n,m!
6 5er ~n,m!1ew~n,m!6ez~n,m! ,

~3!
h~n,m!

6 56~hr ~n,m!1hw~n,m!!1hz~n,m! .

The expressions of the modal functions in~3! are given in
Appendix B.

To determine the coefficientsan,m , bn,m , cn,m , dn,m , we
make use of the Lorentz reciprocity principle, which relates
the fields to the sourcesJ andJm:

t
S

~E~n,m!
6 3H2E3H~n,m!

6 !•n̂dS5E E E J•E~n,m!
6 dV,

E~n,m!
6 5e~n,m!

6 e7 jkz~n,m!z, ~4!

H~n,m!
6 5h~n,m!

6 e7 jkz~n,m!z.

Because of the orthogonality of the field functions~3!, we
get:

an,m5
1

2 E E
A
H i ~n,m!

2
•JmdS,

bn,m5
1

2 E E
A
H i ~n,m!

1
•JmdS,

~5!

cn,m52
1

2 E E
A
He~n,m!

2
•JmdS,

bn,m52
1

2 E E
A
He~n,m!

1
•JmdS.

The coefficients of the scattered fields, in the case of a
small aperture, are related to an electric and a magnetic di-
pole on its center.

an,m5
jv

2
~mH i ~n,m!

2
•M2Ei ~n,m!

2
•P!,

bn,m5
jv

2
~mH i ~n,m!

1
•M2Ei ~n,m!

1
•P!,

~6!

cn,m52
jv

2
~mHe~n,m!

2
•M2Ee~n,m!

2
•P!,

dn,m52
jv

2
~mHe~n,m!

1
•M2Ee~n,m!

1
•P!.

On the other hand, these electric and magnetic dipoles are
proportional to the true tangent magnetic field and normal
electric field at the aperture, through the electric and mag-
netic polarizability coefficientsam andae . In the static ap-
proximation, these dipole coefficients have been calculated
for various aperture shapes@8,11#.

The electric and magnetic dipoles are given by:

M5aJm•~H01H i2He!u r5b
w5z50

,

~7!
P5«aJe•~E01Ei2Ee!u r5b

w5z50
,

whereH i andHe ~Ei andEe! are the tangent magnetic~elec-
tric! fields scattered in the circular and coaxial waveguide,
respectively, andaIm, aJe are the polarizability tensors.

The static solutions ofP andM , being in phase with the
fields, do not lead to power extraction from the incident
wave, so that the power conservation law is violated. The
modified Bethe’s theory allows to find the correct expression
for the dipole moments, such to balance the scattered power.
In waveguide coupling problems, the leading correction term
comes from the propagating modes that are excited@8#.

Substituting the expressions of the fields in~7! we derive
the following linear system for the dipole components:

S 11ammSww 7ammSwz 6amSwr

6ammSwz 12ammSzz amSzr

6
ae

c2
Swr 2

ae

c2
Szr 11ae«Srr

D S Mw

Mz

Pr

D
5S amH0w

0

ae«E0r

D , ~8!

where we have defined

Sww5
jv

2 ( ~hiw~n,m!
2 2hew~n,m!

2 !u r5b
w50

,

Swz5
jv

2 ( ~hiw~n,m!hiz~n,m!2hew~n,m!hez~n,m!!u r5b
w50

,

Swr5
jv

2 ( ~hiw~n,m!eir ~n,m!2hew~n,m!eer~n,m!!u r5b
w50

,

~9!

Szz5
jv

2 ( ~hiz~n,m!
2 2hez~n,m!

2 !u r5b
w50

,

Szr5
jv

2 ( ~hiz~n,m!eir ~n,m!2hez~n,m!eer~n,m!!u r5b
w50

,

Srr5
jv

2 ( ~eir ~n,m!
2 2eer~n,m!

2 !u r5b
w50

.

Coaxial structure

We now investigate the effect of the outer pipe of radiusd
on the coupling impedance. First consider the simple case of
frequencies such that all TE and TM modes are below cutoff,
so that there is propagation only in the coaxial waveguide.
Under these conditions, the magnetic field can have only the
component alongw, therefore, the linear system in~8! re-
duces to

S 11ammSww 6amSwr

6
ae

c2
Swr 11ae«Srr D S Mw

Pr

D 5S amH0w

ae«E0r

D ~10!
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with

Sww5
jv

2
he0w
2 u r5b

w50
,

Swr5
jv

2
he0wee0r u r5b

w50
,

Srr5
jv

2
ee0r
2 u r5b

w50
,

where we have indicated with the single subscript 0 the TEM
modal functions. Solving~10! gives:

Mw5
amH0w

D
,

Pr5
ae«E0r

D
, ~11!

D512 j
kR

6p

~R/b!2

ln~d/b!
,

The polarizability coefficientsae , am for a thin circular
hole of radiusR are equal to22R3/3 and 4R3/3, respec-
tively @1#.

III. LONGITUDINAL IMPEDANCE

The longitudinal impedance is defined by

Zi~v!52
2p

q E
2`

1`

Ez~r50!ejk0zdz,

~12!

k05
v

bc
.

Only the TM0m, having nonzero longitudinal electric field
on the pipe axis, contribute to the impedance. After carrying
out the integration forb51, we get:

Zi~v!52 j
vZ0
pqb F1c Mw1Pr G (

m51

`
1

j0mJ1~j0m!
. ~13!

The sum of the series in~13! is equal to 1/2, so that we
recognize the impedance found by Kurennoy@1# but for the
factor 1/D in the expressions for the dipole moments~11!.

By substituting~11! and ~A5! in ~13!, it is easy to show
that at frequencies below the cutoff ofgi andge the condi-
tion

v!
c

R

ln~d/b!

~R/b!2

is always fulfilled so that we can write:

Zi~v!'
Z0
6p2 kR~R/b!2F2 j1

kR

6p

~R/b!2

ln~d/b!G . ~14!

It is worth pointing out that the real part of the impedance
behaves likev2.

IV. NUMERICAL RESULTS

In order to check the validity of expression~14! we per-
form simulations with the numerical code MAFIA. To sat-
isfy all the model approximations some limitations have to
be fulfilled in the simulations:

~a! The radius of the hole has to be much smaller than the
radius of the inner tube:R!2pb.

~b! The inner tube wall thickness should be much smaller
than the hole radius in order to prevent attenuation of the
fields radiated outside the inner tube.

~c! The bunch spectrum must lie under the lowest cutoffs
of the inner cylindrical tube and the coaxial formed by the
inner and outer tubes.

~d! Both tubes must be long enough in order to simulate
an infinitely long coaxial line. In our simulations the tube is
much longer than the bunch lengthsz in the loss factor cal-
culations.

Once we meet these conditions, (kR/6p)[(R/b)2/
ln(d/b)] is !1 within all the bunch spectrum and the real
part of the impedance can be written as:

Re$Z~v!%5Z0S v

c D 2 R6

36p3b4 ln~d/b!
. ~15!

Here we consider the case withd.b and notd'b. Ap-
plying the standard definition of the loss factor for the
Gaussian bunch we have:

kl~s!5
Z0ApR6c

48p4b4 ln~d/b!sz
3 . ~16!

We compared the above analytical expression to the nu-
merically calculated loss factor. Figure 2 shows the depen-
dence of the loss factor of the Gaussian bunch withsz54
cm on the hole radius. The inner tube radius is 2 cm and the
outer one is 2.4 cm. The numerical results~black points! fit
well the analytical dependence~solid line!. Some small dis-
agreement is observed atR510 mm, when the hole radius is
getting comparable to the inner pipe radius, i.e., when the
model approximation no longer holds.

Figure 3 shows the dependence of the loss factor of the
Gaussian bunch withsz55 cm on the ratio of the pipe radii,
d/b. The inner radius is constant and equal to 1 cm, the hole
radius is 3 mm in the given set of simulations. As it can be
seen, the analytical logarithmic dependence~16! is reason-
ably confirmed by the simulations.

FIG. 2. Dependence of the loss factor on the hole radius.
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V. DIPOLE LONGITUDINAL
AND TRANSVERSE IMPEDANCES

A. Longitudinal dipole impedance

The dipole field of a charge traveling with an offset
(r 1 ,w1) at low frequency is

E0r~r5b,w50!5
qZ0
2p2

r 1
b2

cosw1 ,

~17!

H0w~r5b,w50!5
q

2p2

r 1
b2

cosw1 .

Following a procedure similar to that of Kurennoy@1#, we
obtain:

Zi
n51~r ,w!5 j

2vZ0
3p2c

R3

b4
rr 1 cosw cosw1

D (
m

1

J0~j1,m!
,

~18!

where thej1,m are the zeros of the first order Bessel’s func-
tion J1(x). In Appendix C it is shown that the series in~18!
can be analytically summed and it is equal to21.

B. Transverse dipole impedance

The transverse impedance is defined by:

Z'~v!52
j

qr1
E

2`

`

@~Er2Z0Hw! r̂

1~Ew1Z0Hr !ŵ#ejk0zdz, ~19!

where the transverse field are those for the dipole fields (n
51) given by~B1! and ~B3! in the limit (r ,w)→0.

After some calculations, again we find the same expres-
sion as Kurennoy’s except for the factor 1/D, namely:

Z'~v!52 j
2Z0
3p2

R3

b4
cosw1

D

3S 2(
m

j1,m8

~j1,m82 21!J1~j1,m8 !
1(

m

1

J0~j1,m! D r̂ ,
~20!

where the expression in brackets is equal to 1.
We remind that the above expression can be derived di-

rectly from the longitudinal impedance in~18! by applying
the general relation between longitudinal and transverse im-
pedances:

Z'5
c

vr 1
“'Zi . ~21!

From ~20! we see that the transverse impedance also ex-
hibits a real part, which is linear with frequency.

VI. IMPEDANCE FOR b<1

In the case of a charge traveling with velocityv,c, the
impedance is in general lower. Only the fields synchronous
with the charge~i.e., with the same phase velocity! can con-
tribute to the impedance. This effect is accounted for by
evaluating the integrals~12! and ~19! assumingk05v/bc.

The final expressions are

Zi~v!52 j
2vZ0
qb

bFbc Mw2Pr G
3(

m

1

J1~j0,m!j0,m
F S kb

gj0,m
D 21b2G21

~22!

and

Z'~v!52 j
2Z0
qb2

bc

r 1
Fbc Mw2Pr G (

m51

`
1

J0~j1,m!

3F S kb

gj1,m
D 21b2G21

r̂ . ~23!

VII. CONCLUSIONS

We have calculated the coupling impedance of a pumping
hole on a coaxial beam pipe at low frequency. It has been
shown that, applying a modified Bethe’s diffraction theory
which accounts for the power loss, the longitudinal and
transverse impedances have a resistive term. Numerical cal-
culations confirm the analytical results.

APPENDIX A

The fields produced by a point charge traveling inside a
perfectly conducting cylindrical pipe with velocityv5bcz
are found from the scalar potentialV(r ,w,z2vt) solution of
the Maxwell equations with homogeneous boundary condi-
tions at the pipe wallr5b @12#.

In cylindrical coordinates we can express this potential as
a sum of multipole terms:

FIG. 3. Dependence of the loss factor on the ratio of the pipe
radii.
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V~r ,w,z2vt !5
1

2p (
n50

`

cos~nw!

3E
2`

`

Ṽn~r ,r 1 ,k0!e
2 jk0~z2vt !dk0 ,

~A1!

where we made use of the Fourier transform from thez space

to the wave-number domaink. Each Fourier component is
obtained by solving the differential equation

¹'V1
1

g2

]V

]z
52

r

«
, ~A2!

whereg5~12b2!21/2. Imposing the boundary conditions at
the pipe walls, we get:

Ṽn~r ,r 1 ,k0!5
q«n
2p« H Kn~xr !I n~xr 1!2

I n~xr 1!

I n~xb!
Kn~xb!I n~xr !, r>r 1

Kn~xr 1!I n~xr !2
I n~xr 1!

I n~xb!
Kn~xb!I n~xr !, r 1>r ,

~A3!

wherex5k0/bg, I n andKn are the modified Bessel’s func-
tions, and«n is Neumann’s symbol~1 if n50, 2 if n.0!.

The electric field can be obtained from

E52
1

g2

]V

]z
ẑ2“'V. ~A4!

From ~A3! and~A4! it is easy to see that for a relativistic
charge the low-frequency monopolar fields on the aperture
are

Eor
n50~r5b,w50!5Z0

q

2pb
r̂ ,

~A5!

How
n50~r5b,w50!5

q

2pb
ŵ,

while the corresponding dipole fields are given by

Eor
n51~r5b,w50!5Z0

q

2p2

r 1
b2

~cosw1! r̂ ,

~A6!

How
n51~r5b,w50!5

q

2p2

r 1
b2

~cosw1!ŵ.

For b,1 there is also a component of the electric field
along z. However, we do not give its expression since it
never couples with the aperture.

APPENDIX B

Circular waveguide „gi…

TE modes

er52Cn,m

n

r
Jn~kt~n,m!r !cos~nw!, ~B1!

ew5Cn,nkt~n,m!Jn8~kt~n,m!r !sin~nw!,

ez50,

hr52Cn,m

kt~n,m!kz~n,m!

vm
Jn8~kt~n,m!r !sin~nw!,

hw52Cn,m

kz~n,m!

vm

n

r
Jn~kt~n,m!r !cos~nw!,

hz5Cn,m

kt~n,m!
2

jvm
Jn~kt~n,m!r !sin~nw!.

The normalization constantCn,m is given by:

1

Cn,m
2 5

pkz~n,m!

vm F ~11dn0!n
2E

0

b

Jn
2~kt~n,m!r !

dr

r

1~12dn0!kt~n,m!
2 E

0

b

Jn8
2~kt~n,m!r !rdr G . ~B2!

For the TE modes thekt’s are the zeros ofJn8(jn,m8 ) divided
by b.

TM modes

er52Cn,m

kt~n,m!

v«
Jn8~kt~n,m!r !cos~nw!,

ew5Cn,m

1

v«

n

r
Jn~kt~n,m!r !sin~nw!,

ez5Cn,m

1

jv«

kt~n,m!
2

kz~n,m!
Jn~kt~n,m!r !cos~nw!,

~B3!

hr52Cn,m

1

kz~n,m!

n

r
Jn~kt~n,m!r !sin~nw!,

hw52Cn,m

kt~n,m!

kz~n,m!
Jn8~kt~n,m!r !cos~nw!,

hz50.

For TM modes,Cn,m is
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1

Cn,m
2 5

p

v«kz~n,m!
F ~12dn0!n

2E
0

b

Jn
2~kt~n,m!r !

dr

r

1~11dn0!kt~n,m!
2 E

0

b

Jn8
2~kt~n,m!r !rdr G ~B4!

and thekt’s are 1/b times the zeros ofJn(jn,m).

Coaxial Waveguide„ge…

TEM mode

ee0r5AZ0/2p
1

Aln~d/b!

1

r
,

~B5!

he0w5
1

Z0
ee0r .

TE and TM modes forge can be obtained from the cor-
respondentgi modes simply substituting [Jn] to Jn and
@Jn8# to Jn8 , where we have defined:

@Jn#5Jn~kt~n,m!r !15 2
Jn8~kt~n,m!b!

Yn8~kt~n,m!b!
Yn~kt~n,m!r ! ~TE!

2
Jn~kt~n,m!b!

Yn~kt~n,m!b!
Yn~kt~n,m!r ! ~TM!,

~B6!

@Jn8#5Jn8~kt~n,m!r !15 2
Jn8~kt~n,m!b!

Yn8~kt~n,m!b!
Yn8~kt~n,m!r ! ~TE!

2
Jn~kt~n,m!b!

Yn~kt~n,m!b!
Yn8~kt~n,m!r ! ~TM!.

The kt’s in ~B6! are 1/b times the zeros of@Jn8# ~TE
modes! and of [Jn] ~TM modes!, calculated forr5b.

APPENDIX C

To calculate the sum in~18!, we make use of the relation
@13#:

1

J0~j1,m!
52(

k51

`
j0,k

~j0,k
2 2j1,m

2 !J1~j0,k!
. ~C1!

From ~18! and~C1!, exchanging the order of summation,
one gets:

(
m51

`
1

J0~j1,m!
52(

k51

`
j0,k

J1~j0,k!
(
m51

`
1

j0,k
2 2j1,m

2 . ~C2!

The second sum in the right-hand side of~C2! is equal to
2(1/2)J2(j0,m)/J1(j0,m) so that the above equation reduces
to

(
m51

`
1

J0~j1,m!
522(

k51

`
J2~j0,k!

J1
2~j0,k!

, ~C3!

which, given the properties of Bessel’s functions, is finally
equal to

(
m51

`
1

J0~j1,m!
522(

k51

`
1

j0,kJ1~j0,k!
521. ~C4!
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